

LSST in a few figures

Optical telescope 8.4 m diameter

Wide-field camera : 3.5°, 3.2 Gpixels

6 wide-band filters U g r i z y

Galaxies: r_{lim}=27.5 after 10 year coadd.

- Final catalogue: 10¹⁰ galaxies, 10¹⁰ stars
- Final database 15 PetaBytes
- Weak lensing up to z ~ 3
- 2,500,000 SNIa up to z ~ 1
- BAO: 3.10⁹ galaxies up to z ~ 3
- Transients with alerts (2.10⁶/night)
- See LSST science-book in http://www.lsst.org

M1M3 primary & Tertiary mirrors

The main telescope

Summary of High Level Science Requirements

Survey Property	Performance		
Main Survey Area / duration	18000 sq. deg. / 10 years		
Total visits per sky patch	825 (1 visit per ~3-4 nights)		
Filter set	6 filters (ugrizy) from 320-1050nm		
Single visit	2 x (15 second exposures + 1s shutter + 2s readout)		
Single Visit Limiting Magnitude (AB 5 σ)	u = 23.9; g = 25.0; r = 24.7; l = 24.0; z = 23.3; y = 22.1		
10 year coadd. Limiting Magnitude	u = 26.1; g = 27.4; r = 27.5; l = 26.8; z = 26.1; y = 24.9		
Photometric calibration	< 5mmag repeatability & colors, <10mmag absolute		
Median delivered image quality	~ 0.7 arcsec. FWHM		
Transient processing latency	60 sec after last visit exposure		
Data release	Full reprocessing of survey data annually		

LSST main survey deliverable

ob2_1060 : SupernovaMetric_MedianMaxGap

« 4D » object mapping (stars, galaxies...) of 18,000 sq. deg. to an uniform depth

- (α , δ) positions on the sky
- Photometric redshifts z
- Time variations
 - -> SN, lensing, AGN...

median maximum gap (in days) in observations near SN light curve peak

8

8.5

9.5

1010

6.5

7

7.5

0.7**1**.001.251.501.752.002.252.502.753.003.253.503.754.004.254.50 Median Inter-Night Gap (days) Other survey modes ~10% of time ~1h/night Very Deep + fast time domain + special zones (ecliptic, galactic plane, Magellanic clouds)

The Science Enabled by LSST (see science book: arXiv:0912.0201)

- Time domain science
 - Nova, supernova, GRBs, GW
 - Source characterization
 - Gravitational microlensing
 - Interstellar scintillation
- Finding moving sources
 - Asteroids and comets
 - Proper motions of stars
- Mapping the Milky Way
 - Tidal streams
 - Galactic structure
- Dark energy and dark matter
 - Gravitational lensing
 - Supernovae studies
 - Large scale structures (incl. BAO)
 - Slight distortion in shape
 - -> Trace the nature of dark energy

The transient sky

Detection of transients announced within 60s. Expect ~ 1-10 million per night

The transient sky

Not only point-sources

- LSST will extend time-volume space a thousand times over current surveys (new classes of object?)!
- Not only point sources echo of a supernova explosion lacksquare

Becker et al

LSST Observing Cadence

https://www.youtube.com/watch?v=PKNaI3fAST4

- 2x15s exposures (to 25 mag) per visit to a given field (9.6 deg²)
 -> cosmic ray rejection
- Visit the field again same night
 -> asteroid rejection
- Number of visits/night: 900 (1 or 2 passbands)
- main survey (85%) fields: visited every ~3 days (random colorband) and every ~15 days in r band
- Deep-Drilling (5%, 5 fields): 1 hour/night. 50 consecutive 15s exposures x 4 filters
- Median slew time between visits= 5s
- Average slew time between visits=12s

Figure 6.2: Histograms of median intra- (left) and inter- (right) night visit gaps for any band for several OpSim runs.

Figure 6.3: Histograms of median *r*-band intra- (left) and inter- (right) night visit gaps for several OpSim runs.

Science with Trigger <-> LSST

LSST alerts -> trigger follow-up for specific events

- Microlensing (with caustic crossing) -> Dark matter / planets
- SNs -> Cosmology
- Asteroids -> Save the Earth!

Search for optical counterparts AND trigger follow-up

- GW -> Hubble constant (with spectro-z)
- GRB afterglows

- ...

- Neutrino sources
- High Energy cosmic ray sources

LSST Searches triggered by others ?

For exceptional opportunities only (LSST is a survey): GW
 counterparts can be found with a few LSST-pointings, follow-up by others
 -> needs negligible false positive

<-----> Time critical, needs careful specific filtering ----->

BUT specific LSST alerts can also be used later

- to retroactively search for GW events in the interferometers records

-> Potential factor 2 for GW searches; what about GRB afterglows?

LSST alerts...

Detection of transients announced within 60s. Expect ~ 2 million per night

Transients detected (+ or -5σ) and reported in 60s in difference images =(current – coadded template), called DIASources

Broker: Filter a stream of ~ 2 million DIAsources/night:
 Variable stars, SNe, asteroids, and « everything else »

-> Robust filtering (remove false detections)

failure

Given a stream of ~ 10,000 DIASources every ~ 40s (per 10 deg² field)

- Asteroids will dominate on the Ecliptic, become insignificant >30° from it.

- Variable stars (~ 1 % of all stars) will dominate in the Galactic plane, always significant (~ **400/field** @ Galactic pole)

- Quasars will contribute up to 500/field (but likely several times lower)
- SNe will contribute up to about 100/field

Discovery rate of new transients will drop fast (factor of ~ 100 after 2 years)

new DIASources will become dominated by cataclysmic variable stars and quasars

FIGURE 3: Generation of alerts from the nightly data: image differencing and measurement of the properties of the DIASources, identification and filtering of spurious events, association of previously detected DIAObjects and SSObjects with the newly detected DIASources.

Delivery by LSST mini-broker (60s)

- **Positions** (0.1"), **shapes** (moments), **PSF**, **fluxes** (in the current passband) and (co)variances
- Alert confidence level
- **30x30 pixels patch** on difference image and reference image (with mask and variance)
- 6 months of history: variations associated with the object detected in the difference image
 - Variability characteristics (but no astrophysical interpretation)
 - Environment (neighbouring objects, distances...)
 - See details in document LSST/LDM-151

Simulation of a GW alert (1)

Assume GW detected within a 20 deg² box

- -> covered by **3 LSST fields**
- **t=0** (trigger)
- t=40s (average) LSST points towards the GW direction
 - -> 3 x double exposures: 3x38s; search for transients starts after 1rst exposure
 - t=154s end of data taking
 - t=214s end of transient processing
 - -> expect on average **10K-alerts x 3**
- Delivery to distributors/brokers; primary end-points of LSST alerts stream (<u>http://voevent.org</u>)
- For each transient, LSST provides
 - Position (<0.1"), flux, shape of source
 - 1/2 year history (light-curves in all bands)
 - Variability characterization
 - Stamp images around the object

Simulation of a GW alert (2)

Broker: Filter and classify transients. LSST will run its own broker for faster interaction with GW and follow-up teams

- Remove already cataloged variable objects: periodic, SNs, asteroids...
 - -> Residual rate of new transients drastically decreases (÷100) after 2 years of operations
- ~ 100 transients/field, dominated by SNs
- But only ~ 10 of these SNs are brand new
 > Targeting galaxies not necessary
 > Follow-up these 3x10. The searched counterpart has the best chances to be the brightest (at least at the beginning)
- Remember 1: 5σ detection limit in one visit is [22.1-25] depending on the filter
- *Remember 2*: LSST will only detect the counterpart and NOT monitor it

Detection of γ-ray burst afterglows

Microlensing expectations

Table 8.4: Nearby Microlens Event Rat	es
--	----

- O(10⁸ stars) monitored
- with $\Delta m < 5 mmag$
- Towards Milky-Way
- Towards LMC/SMC
- On average every 4th night during 10 years

	Past	Present	LSST		
	per decade	per decade	per decade	per decade	
Lens type	$per deg^2$	$per deg^2$	$per deg^2$	over 150 deg^2	
M dwarfs	2.2	46	920	1.4×10^5	
L dwarfs	0.051	1.1	22	3200	
T dwarfs	0.36	7.6	150	2.3×10^4	
WDs	0.4	8.6	170	2.6×10^4	
NSs	0.3	6.1	122	1.8×10^4	
BHs	0.018	0.38	7.7	1200	

The "Threat" from "Earth killers"

Diameter, Km

The "Threat" from "Earth killers"

Diameter, Km

LSST transient : things to know

• LSST is a survey and NOT an observatory/facility

The consortium will not offer open time or ToO (GW only can motivate dedicated pointings)

don't dream on requests like: Ask for one month to survey this or that

- ~ half of the sky visited every 3-4 nights (but with variable filters)
- 1000 deg² In the Galactic Center observed only 180 times (confusion limits interest for *ad libitum* coaddition...) -> almost useless for μlensing in GC
- But there is some flexibility: cadencing is not set in stone
 - As long as the uniformity of the **main** survey is guaranteed over the 10 yrs
 - As long as there is no conflict with the cosmological goals
 - Taking into account the filter changes (6 filters)
 - If it is discussed with enough anticipation with the science group « transient searches »
 - If the community (GW, neutrino, HECR...) proposes a convincing plan
- Also think on the commissioning (2021-22) and mini-surveys (1-10% time)

Complements

Ref. documents :

- LDM151
- LSE-163_DataProductsDefinitionDocumentDPDD

LSST Project Schedule

Site quality

- 1 year study
- Median seeing
 @500nm : 0.65 "

Telescope Mount Enables Fast Slew and Settle

- Points to new positions in the sky every 39 seconds (average)
- Tracks during exposures and slews
 3.5° to adjacent fields in ~ 4 s

LSST visits

the total number of visits is 2.45 million, with

- 85.1% spent on the Universal proposal (the main deep-wide-fast survey)
- **_ 6.5% on the North Ecliptic proposal**
- **1.7% on the Galactic plane proposal**
- **2.2% on the South Celestial pole proposal**
- _ 4.5% on the Deep Drilling proposal (5 fields)

Search for missing H₂ turbulent galactic gas through scintillation detection (the OSER project)

Light received by telescope varies with

- *timescale* ~10 *min* (due to the relative velocity of the gas)

- modulation of a few % (depending on distances / turbulence parameters / source extension)

Illumination pattern from a scintillating star

Alerts will be available through a hierarchy of services

External value-adding systems ("brokers": e.g., ANTARES)

- Validated and tested systems that ingest the full LSST data stream and provide additional information about events (e.g., astrophysical classifications, matches to external datasets)
- Systems that rebroadcast the LSST data stream (a cascade effect increasing the number of access points without needing bandwidth)

A limited LSST filtering service ("mini-broker")

- Configurable agents that return subsets of the attributes of events (e.g. summaries of the light curve, exclusion on cutout images)
- Access to these agents will be through standard VOEvent clients
 and will require authentication
- Access to historical alerts through the L1 and alert databases
 - L1 DB: query for DIAObjects/DIASources/SSObjects by properties
 - Alert DB: enables training of brokers/classification algorithms by replaying previous alert stream

Microlensing challenges

Selection criteria

- On-line trigger to initiate follow-up
- Off-line to search for any exotic events
- Estimate efficiency $\varepsilon(t_F)$
- Exploit the excellent photometric repeatability (<1% for g<21) to search for large impact parameter events and non-standard events

- Decrease microlensing degeneracy (D_{os})

• Synergies

- EUCLID (ground-space parallax, NIR)
- On Earth follow-up telescopes

• Use astrometric information The EXPECTED PROPER MOTION, PARALLAX AND ACCURACY FOR A 10-YEAR LONG BASELINE SURVEY.

r	σ^a_{xy}	σ^b_π	σ^c_μ	σ_1^d	σ^e_C
mag	mas	mas	mas/yr	mag	mag
21	11	0.6	0.2	0.01	0.005
22	15	0.8	0.3	0.02	0.005
23	31	1.3	0.5	0.04	0.006
24	74	2.9	1.0	0.10	0.009

- ^{*a*} Typical astrometric accuracy (rms per coordinate per visit);
- ^b Parallax accuracy for 10-year long survey;
- ^c Proper motion accuracy for 10-year long survey;
- ^d Photometric error for a single visit (two 15-second exposures):
- ^e Photometric error for coadded observations (see Table 1).