

NS+NS/BH mergers: GW and em counterparts Models and observations needed

Frédéric Daigne (Institut d'Astrophysique de Paris – Sorbonne Université)

TS2020_II / Transient Sky 2020 National Workshop - 2nd Edition — 4-6 juin 2018 Montpellier

NS+NS/BH mergers: GW and em counterparts Models and observations needed

Frédéric Daigne (Institut d'Astrophysique de Paris – Sorbonne Université)

GW 170817 and counterparts

Remnant of a NS+NS merger

Alexander et al

NS+NS/BH: GW observations needed

- More events: merger rates
- NS+BH systems?
- More prompt small 3D error boxes:
 - more em counterparts, with different viewing angle
 - face-on systems? ($\theta_v < a$ few degrees)
- Post-merger GW emission: nature/evolution of the central object after the merger (BH, NS, NS→BH, ...)
- Note for the search of em counterparts. After GW170817, we know that an afterglow can be found even without a GRB. KN detection
 - \rightarrow sub arcsecond localization \rightarrow afterglow detection/severe upper limits

Maximum distance for a KN detection? GW170817: $\mathcal{M}_{peak} \sim -15 \rightarrow m_{peak} \sim 20$ @ 100 Mpc

Kilonova

Dynamical ejecta? Neutrino wind from the disk?

Kilonova: observations needed

- Better estimates of the ejected mass/composition
 Better understanding of the geometry of the kilonova ejectas (more events with spectro-photometric follow-up+better models)
- Spectroscopic signature of heavy elements?
- KN associated to NS+BH?
- Notes: GW+KN
 - Better constraints on (D, θ_v)
 - H₀: many events needed

indirect constraints on the nature of the post-merger central object, (if no post-merger GW signal) via the ejected mass

Are NS+NS mergers the main astrophysical site for the production of r-process heavy elements?

Post-O1 upper limits on BNS rate

Abbott et al. 2016, post-01

Post-O1 upper limits on BNS rate

Abbott et al. 2016, post-01

- Model: estimate the BNS rate assuming that most of the r-process elements are produced by NS+NS mergers
- Observations: Eu measured in metal-poor halo stars in the Milky Way = tracer of the time evolution of the r-process

Vangioni, Goriely, Daigne, François & Belczynski (2016)

Post-O1 upper limits on BNS rate

Abbott et al. 2016, post-01

Post-O1 upper limits on BNS rate

To confirme that mergers are the main contributers of r-process elements: more evidence for heavy elements formation, estimate of the ejected mass, ...

Abbott et al. 2016 post-01, Abott et al. 2017 post-02

Short GRB

Short GRB

GRB170817A=puzzling (not very hard, very under-luminous)

 Standard GRB seen off-axis unlikely (Ep would be very high if seen on-axis)

Short GRB:

relativistic jet, seen off-axis?

Short GRB

GRB170817A=puzzling (not very hard, very under-luminous)

 Standard GRB seen off-axis: very unlikely (Ep would be very high if seen on-axis)

Short GRB: emission mechanism? Observations needed

GRB170817A=puzzling (not very hard, very under-luminous) GRB980425 at 40 Mpc

- Dissipation in a mildly relativistic outflow pointing towards us? (jet with lateral structure, cocoon, ...)
- Example: internal shocks can explain the peculiar properties of GRB170817A for a low Lorentz factor/moderate kinetic energy flux
- Needs more detections: intensity = $f(\theta_v)$?

Short GRB: GW-GRB delay? Observations needed

GRB170817A=puzzling (not very hard, very under-luminous

- GW-GRB delay: ~burst duration
- is natural

 if the relativistic ejection occurs rapidly after the merger (i.e. << s)
 if the emission occurs above the photosphere (shocks, recon.)

 is less natural if the GRB is due to a shock breakout

Needs more detections, with some statistics on the measured delay

GW170817: X, V and radio : same spectral regime $v_m < v_{obs} < v_c$

Rise to maximum as $\sim t^{1.5}$ / decline confirmed at 250 days

relativistic jet, seen off-axis?

Kilonova ejectas not shown

relativistic jet, seen off-axis?

• Afterglow of a jet seen off-axis? No acceptable fit

- Afterglow of a jet seen off-axis? No acceptable fit
- Expanding thin quasi-spherical ejecta seen on-axis? No acceptable fit

- Afterglow of a jet seen off-axis? No acceptable fit
- Expanding thin quasi-spherical ejecta seen on-axis? No acceptable fit
- Expanding quasi-spherical ejecta with radial structure: OK, large degeneracy in ¹⁰ model parameters

- Afterglow of a jet seen off-axis? No acceptable fit
- Expanding thin quasi-spherical ejecta seen on-axis? No acceptable fit
- Expanding quasi-spherical ejecta with radial structure: OK
- Lateral structure instead of radial structure: equally good fits

Here: the central jet (E_{iso,on}~10⁵² erg) contributes at 100 days

- Afterglow of a jet seen off-axis? No acceptable fit
- Expanding thin quasi-spherical ejecta seen on-axis? No acceptable fit
- Expanding quasi-spherical ejecta with radial structure: OK
- Lateral structure instead of radial structure: equally good fits
- These two classes of models can apply to two different post-merger behaviors:

1. relativistic ejection is delayed, jet has to go through the blue kilonova ejecta \rightarrow formation of a coocon (afterglow) ; jet breakout (GRB) ; jet emerges or not

- 2. the whole ejection is produced at the same time after the merger, with structure \rightarrow in the core: ultra-relativistic jet (bright GRB if on-axis), or not \rightarrow intermediate latitude: mildly rel. ejecta (afterglow) with radial/lateral structure
 - \rightarrow larger latitudes: blue kilonova ejecta

- Expanding quasi-spherical ejecta with radial structure: OK
- Lateral structure instead of radial structure: equally good fits
- Hidden central ultra-relativistic jet? Example for $\theta_j = 5^\circ$, $\theta_v = 25^\circ$, $\varepsilon_e = 0.1$ (note: if θ_v decreases, it is more difficult to hide the jet)

- Expanding quasi-spherical ejecta with radial structure: OK
- Lateral structure instead of radial structure: equally good fits

Example for θ_i =5°, θ_v =25°, ϵ_e =0.1

- Expanding quasi-spherical ejecta with radial structure: OK
- Lateral structure instead of radial structure: equally good fits

- Expanding quasi-spherical ejecta with radial structure: OK
- Lateral structure instead of radial structure: equally good fits

Possible diagnostic: polarization (maximum polarization: $\sim 28\%$ at \sim one year)

Afterglow: observations needed

- More detection, at different viewing angles!
- Additional diagnostics to break the radial/lateral structure degeneracy:

Afterglow: observations needed

- More detection, at different viewing angles!
- Additional diagnostics to break the radial/lateral structure degeneracy:

Lateral structure

4

Afterglow: observations needed

- More detection, at different viewing angles!
- Additional diagnostics to break the radial/lateral structure degeneracy:

 $\theta_{\tilde{y}} \; [mas]$

-1

QSph+E_{inj}: quasi-spherical Sph+E_{inj}: spherical

Radial structure

Conclusion

Conclusions: observations needed

- More GW events, with different viewing angles
- NS+BH?
- Post merger GW signal
- Rates
- More KN events, with different viewing angles (change in color? Intensity?)
- Universal? NS+BH?
- Statistics: ejected mass?
- Composition? Spectroscopic signature of r-process elements?
- More GRBs, with different viewing angles (change in intensity? Hardness? No GRB?)
- Better description of lightcurve+spectrum
- Statistics: GW-GRB delay
- More afterglows, with different view angles (different components?)
- Polarization? Imaging (radio afterglow: VLBI?)

Conclusions: not discussed here

- Variability in the afterglow (flares?)
- Indirect constraints on the nature of the post-merger central object
- Information brought from the study of the host galaxy/source environment
- Cosmology/Fundamental physics

- Modelling tools at IAP:
 - Short GRB: detailed internal shock model
 - Afterglow: detailed model

- fitting procedure
- radial/lateral structure
- polarization
- soon: imaging
- soon: reverse shock emission

- Kilonova: very naive model