

Alerts of the network of the TAROT telescopes

Loïc EYMAR Ingénieur à l'Université de Nice France

ARTEMIS

1

With contributions of

Institut Pythéas Observatoire des Sciences de l'Univers Aix*Marseille Université

TS2020-II 5 juin 2018

Principles of the observation gamma ray bursts

A star explodes

Gamma rays are detected by spatial telescopes

Find a star in an almost void field of view

Other wavelengths

Find and perform a follow-up of the optical counterpart Alert notice Find a star in field of view amongst

90 degrees

+8 min

+40 min

degree 0.1

TAROT + Zadko – Heterogeneous network of telescopes

Optical telescopes for GRBs Photometric follow-up (light curves)

Optical telescopes for GRBs Classification of telescopes

Gamma trigger

t0:t0+300s

Swift INTEGRAL FERMI

Early Photometry t0+30s : t0+2h MASTER MITSuME Rotse TAROT UVOT TNT PROMPT REM KAIT

Small diameters 20 cm to 1 meter Rapid slewing Autonomous

Late Photometry t0+3min : t0+1 week

GROND Shajn NOT RATIR P60 Tautenburg Faulkes Liverpool RTT150

Intermédiate diameters 1 to 4 meters Standard pointing Human vérif.

Spectrometry t0+1h : t0+1day

VLT Gemini Keck Magelan GTC

Large diameters 4 to 11 meters Slow reactivity Human manual

Telescopes for GRBs : Early photometry

GCN circular productions of telescopes having diameter <100 cm

Prepare the optical observations after 2020 Context of cosmic explosions

Different kinds of ALERTS

Trigger instrument	Delay	Error box	TAROT+Zadko		
GRB Swift BAT	15s	6 arcmin	15 /year		
GRB Integral Ibis	15s	3 arcmin	1 /year		
GRB FERMI LAT GRB FERMI GBM	few hours few minutes	1 deg 5 deg	1/year 1/year		
Neutrinos ANTARES	10s	1 deg (muons)	10/year		
Neutrinos KM3Net	10s	1 deg (electrons)	10/year (>2020)		
GW Ligo	few minutes	40 deg	2/year		
GW Ligo + Virgo	few hours	10 deg	1/year		

TAROT – Summary of scientific publications about GRBs

205 GRBs observed

- 5% observed during gamma emission + optical counterpart detected
- 13% observed during gamma emission without counterpart detected
- 10% observed after gamma emision + optical counterpart detected

26 papers on GRBs in referred journals 196 GCN circulars

GRBs with TAROT – Early observations

The "drift" technique: Good temporal resolution during the first minute

Figure 3. Light curves of GRB 081126 measured by BAT and TAROT. The dotted line labeled "PSF-TAROT" stands for the spread of a star equivalent to an instantaneous flash of 0 s duration.

No reverse shock during gamma emission. Lags Klotz et al. (2009)

Neutrinos

TAROT follow-up of neutrino events from ANTARES / KM3Net

An example of joined research between MASTER, TAROT and ROTSE

t (seconds after burst)

Adrian-Martinez, S. et al. (2016) 11

Gravitational waves

TAROT follow-up of gravitational wave events from LIGO/Virgo

GW150914 : Abbott, B.P. et al. (2016)

Very arge area in the sky

Merging of black holes Merging of neutron stars New type to come...

Opticale

DECam	i, z	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11	18344, 18350
iPTF	R	R < 20.4	3.1, 3, 1	130	2.8	2.5	0.0	0.2	18337
KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	18361
MASTER	С	< 19.9	-1.1, 7, 7	710	50	36	55	50	18333, 18390, 18903, 19021
Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	18335, 18343, 18362, 18394
La Silla– QUEST	g,r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	18347
SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	18349
Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	18331
	u	u < 18.8 (LMC)	3.4, 1, 1						18346
TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9	18332, 18348
TOROS	С	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	18338
VST@ESO	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	18336, 18397

ALERTS GW Ligo

3 GW alerts observed with TAROTs

Kanthankorn NOYSENA in prep.

Two different types of TAROT's footprint, 3.24 deg² and 17.98 deg² over the contours of the initial distributed BAYERSTAR localization of GW170104. Nine large tiles almost enclose one-thirth of credible region of southern himisphere

ALERTS GW170817 Ligo + Virgo (NS / NS)

Zadko Follow-up

Andreoni et al. (2017)

Figure 4.: Optical light curve of AT2017gfo for the first week after the GW detection obtained with the AST3-2, SkyMapper (SM), Zadko, and Etelman/VIRT telescopes. Down-arrows indicate upper limits. Note that the evolution at bluer bands is faster than the evolution at redder bands. Dashed vertical lines indicate epochs when spectroscopy was acquired. Spectra analysed in this work and presented in Figure 7 and Figure 8 are indicated in black, whereas spectra marked in grey are to be analysed at a later time.

TAROT – Alert techniques

Small fields of view = 1 pointing + series of images

Large fields of view = (1 pointing + series of images) * N

FERMI = 6 pointings

•

LIGO = 10 pointings (not enough !)

LIGO + Virgo = 9 pointings

TAROT – Alert techniques : planing

Planing for alert :

- Best priority for the first minute after the alert
- Decrease of the priority with the time
- Increase the time between tow picture with the time

Two different types of TAROT's footprint, 3.24 deg^2 and 17.98 deg^2 over the contours of the initial distributed BAYERSTAR localization of GW170104. Nine large tiles almost enclose one-thirth of credible region of southern himisphere

Program for GW observation on O2 :

- Generate mosaic of pointing for minimise the number of pointing inside of the area with the best probability
- Choose a maximum number of pointing by night
- Choose a minimum number of observation of each selected pointing
- For each pointing calculate visibility by each telescope

TAROT – Alert techniques : Objectif for O3

Improve the program for GW observation :

- Progressive calculation -> fast generation of the first pointing
- Use the quality value of GW alert
- Use the distance range of GW alert and check the number of galaxy inside

TAROT – Question

Question ?